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In the Feynman Lectures on Physics, Richard Feynman 
elegantly takes the reader through a set of quantum-
mechanical two-state systems. One of them models the 
location of the nitrogen atom in the ammonia molecule 
NH3 [5]. It’s an important example, because those two 
states are at the heart of the ammonia maser, the 1953 
precursor of the laser. The point to be made here 
emphasizes that this quantum two-state system (and 
Feynman’s other two-state examples) is mathematically 
similar to the coupled mechanical oscillator problem. Let’s 
examine the ammonia molecule problem along the lines 
of Feynman’s approach. We keep in mind that a quantum 
state |𝜓⟩ contains complex numbers, so to get positive-
definite probabilities, its square is 𝜓∗

𝜓 = |𝜓|ଶ =  〈𝜓|𝜓〉, 
where 𝜓∗ denotes the complex conjugate of 𝜓. 
   The architecture of the ammonia molecule features the 
three hydrogen atoms lying in a plane, with the nitrogen 
atom found on either side of the hydrogen-atom plane, as 
in Fig. 4.  
 

 
Figure 4. The structure of the ammonia molecule. The N atom 
can be on either side of the plane of hydrogen atoms. All figures 
by the author. 
 
Let state |1⟩ denote the molecule’s state when the 
nitrogen atom is “above” the plane, and let |2⟩ denote the 
state when the nitrogen lies “below” the plane. States |1⟩  
and |2⟩ can be given the matrix representations of Eqs. 
(23a) and (23b), respectively. As a complete set of 
orthonormal vectors, |1⟩  and |2⟩ form a basis of any 
arbitrary state |𝜓⟩ that describes the location of the 
nitrogen atom relative to the plane of three hydrogens, so 
that 

|𝜓⟩  =  𝜓ଵ|1⟩  +  𝜓ଶ|2⟩.   (27) 
 
   The nitrogen molecule can jump across the plane of 
hydrogen atoms, from state |1⟩ to state |2⟩ or the reverse, 
or if in state |1⟩ or |2⟩ it may stay there. Let H be the  

 
Hamiltonian for the nitrogen atom to either make a 
transition or remain in place. The probability amplitude for 
making the transition from state |1⟩ to state |2⟩ will be 
 〈2|𝐻|1〉 ≡ 𝛽, where by symmetry 〈1|𝐻|2〉 = 𝛽 as well; 
and let the probability amplitude for the nitrogen atom 
staying on one side of the plane of hydrogen atoms be 
〈2|𝐻|2〉 = 〈1|𝐻|1〉 ≡ 𝛼. The evolution of the nitrogen 
atom’s behavior is described by the Schrödinger 
equation, 
 

𝐻|𝜓⟩  =  −
ℏ

௜

డ|ట⟩

డ௧
 ,    (28a) 

 
or, with the matrices written out explicitly, 
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𝛼 𝛽
𝛽 𝛼

൰ ൬
𝜓ଵ

𝜓ଶ
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ℏ

௜
൬

𝜕 𝜓ଵ 𝜕𝑡⁄
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[compare to Eq. (10)], which splits into a pair of coupled 
equations: 
 

𝛼𝜓1 + 𝛽𝜓
2

=  −
ℏ

𝑖

𝜕𝜓1

𝜕𝑡
   (28c) 

and 

𝛽𝜓1 + 𝛼𝜓
2

=  −
ℏ

𝑖

𝜕𝜓2

𝜕𝑡
.   (28d) 

 
Other than the names of the variables and the order of the 
time derivative, Eqs. (28c) and (28d) describe essentially 
the same system as the coupled oscillators of Eqs. (2). 
Therefore, in following the same procedure (forming the 
sums and differences of 𝜓

ଵ
 and 𝜓

ଶ
, solving the problem 

for those combinations, and then inverting) and with the 
initial condition 𝜓

ଵ
(0) = 1 and 𝜓

ଶ
(0) = 0, we find 

 

𝜓
ଵ

(𝑡) =  𝑒ି௜ఈ௧/௛𝑐𝑜𝑠 ቀ
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ℏ
ቁ  (29a) 

 

            𝜓
ଶ

(𝑡) =  𝑖𝑒ି௜ఈ /௛𝑠𝑖𝑛 ቀ
ఉ௧

ℏ
ቁ.  (29b) 

 
Consequently, the probabilities P1 and P2 of the nitrogen 
atom being in state |1⟩ and state |2⟩, respectively, are 
 



𝑃ଵ =  |𝜓ଵ|ଶ =  𝑐𝑜𝑠ଶ ቀ
ఉ௧

ℏ
ቁ  (30a) 

 

𝑃ଶ =  |𝜓ଶ|ଶ =  𝑠𝑖𝑛ଶ ቀ
ఉ௧

ℏ
ቁ.  (30b) 

 
Notice that P1 + P2 = 1 at all times, as required if the 
nitrogen atom is to remain part of the ammonia molecule. 
But it will be observed from Eqs. (30) that P1 and P2 are 
time dependent—𝜓

ଵ
 and 𝜓

ଶ
 are not “stationary states.” 

Figure 5 shows plots of P1(t) and P2(t) as functions of time. 

The probabilities oscillate with a period 𝑇 =
గℏ

ఉ
.  

 
Figure 5. Illustration of the P1(t) and P2(t) states. 
 
Figure 6 shows the same information in another way: 
“clouds” or “balloons” that contain the probabilities for the 
nitrogen atom being in state |1⟩ or state |2⟩ at different 
times.  

 
Figure 6. Illustration of how the probability of the nitrogen atom 
being above or below the plane of hydrogen atoms varies in time 
through one period. The shaded regions indicate a relatively 
high probability of locating the N atom. 
 
At the risk of being repetitive, because the probability 
oscillates, the states 𝜓

ଵ
 and 𝜓

ଶ
 are not stationary 

states—i.e., not eigenstates, not normal modes of the 
nitrogen atom’s motion in the NH3 molecule. Let’s find 
those eigenstates! 
   To find the eigenstates |𝜓ఠ⟩ of the nitrogen molecule in 
this system, we seek states with harmonic time 
dependence, 

|𝜓ఠ⟩  =  ൬
𝐴ଵ

𝐴ଶ
൰ 𝑒ି௜ఠ௧  ≡ |𝐴⟩𝑒ି

೔ಶ೟

ℏ   (31) 

(compare to Eq. (14), where 

𝐸 =  ℏ𝜔,   (32) 

and |𝐴⟩ is time independent; therefore |⟨𝜓𝜔|𝜓𝜔⟩|ଶ is time 

independent. The probability distributions for these states 
remain constant in time—analogous to how the normal-
mode oscillations of the coupled oscillator remain steady 
in time, or how a single standing wave mode in musical  
acoustics does not change.  
 

To proceed, insert the ansatz of Eq. (31) into the 
Schrödinger equation, Eq. (28a), to obtain 
 

൬
𝛼 𝛽
𝛽 𝛼

൰ |𝐴⟩ = 𝐸|𝐴⟩                          (33a) 

or 

൬
𝛼 − 𝐸 𝛽

𝛽 𝛼 − 𝐸
൰ |𝐴⟩ = |0⟩.                (33b) 

To obtain nontrivial solutions, set the determinant of the 
square matrix equal to zero, which gives 
 

𝐸 = 𝛼 ± 𝛽 ≡ 𝐸± .                            (33c) 

A radiative transition between these two eigenstates, with 
their energy difference 𝐸ା − 𝐸ି  = 2𝛽 ~ 10ିସ 𝑒𝑉, 
produces photons in the microwave portion of the 
electromagnetic spectrum [5]. This energy gap is 
responsible for the population inversion in the ammonia 
maser. 
   Having found the eigenvalues, we turn to the 
eigenstates. We start with 𝐸ା =  𝛼 + 𝛽. Upon inserting this 
into Eq. (33a), we find for its corresponding normalized 
eigenstate, 

|𝜓ା⟩  =  
ଵ

√ଶ
ቀ

1
1

ቁ 𝑒ି௜(஑ାஒ)௧ ℏ⁄ .                   (34a) 

Similarly, for the eigenvalue 𝐸ି =  𝛼 − 𝛽, we find for its 
eigenstate 

 |𝜓ି⟩  =  
ଵ

√ଶ
ቀ

−1
   1

ቁ 𝑒ି௜(ఈିఉ)௧ ℏ⁄ .                   (34b) 

You can easily verify that these eigenstates are 
orthonormal and satisfy the completeness relation for all 
t: 

|𝜓ା⟩⟨𝜓
ା

| + |𝜓ି⟩⟨𝜓
ି

| =  1෨.                      (35) 

   Notice (and this was the point of finding eigenstates) 
that the respective probabilities of finding the nitrogen 
atom in |𝜓ା⟩ or state |𝜓ି⟩ are constant in time:  
 

𝑃ା =  ⌊〈𝜓
ା

|𝜓ା〉⌋
ଶ

= ½  and 𝑃 =  ⌊〈𝜓
ି

|𝜓ି〉⌋
ଶ

= ½.  

 
(The fact that 𝑃ା and 𝑃  happen to be the same merely 
reflects the symmetry of the nitrogen atom’s placement 
above or below the plane of hydrogen atoms.) Thus the 
“clouds of probability” remain the same for the eigenstates 
for all times (Fig. 7); they are analogous to the electron 
orbitals in the hydrogen atom. 

 
Figure 7. Shapes that enclose the probability of the nitrogen 
atom’s whereabouts when it’s in a stationary state.  
 



   
 Since the original |1⟩, |2⟩  vectors form a complete set, 
the eigenstates can be expressed as a superposition of 
them: 

|𝜓ା⟩ =  
1

√2
ቀ

1
1

ቁ 𝑒ି௜(ఈାఉ)௧ ℏ⁄     

 

=  
ଵ

√ଶ
(|1⟩  + |2⟩)𝑒ି௜(ఈାఉ)௧ ℏ⁄ ,           (36a) 

and      

|𝜓ି⟩   =  
1

√2
ቀ

−1
   1

ቁ 𝑒ି௜(ఈାఉ)௧ ℏ⁄  

 

=  
ଵ

√ଶ
(−|1⟩  + |2⟩)𝑒ି௜(ఈିఉ)௧ ℏ⁄ .       (36b) 

 
If we think of |1⟩ as the x-axis ଙ̂ and |2⟩ as the y-axis ଚ ̂
basis vectors in a two-dimensional abstract “state space,” 
then by Eqs. (36) the transformation from the {|1⟩, |2⟩} 
basis to the {|𝜓ା⟩, |𝜓ି⟩} basis corresponds to a clockwise 
rotation through 45° (Fig. 8). 
 

 
Figure 8. A change of basis as a rotation of axes. 
 
The Hamiltonian matrix in the {|1⟩, |2⟩} basis had nonzero 
off-diagonal terms. If we rewrite the Hamiltonian matrix in 
the eigenvector {|𝜓ା⟩, |𝜓ି⟩} basis, then H becomes 
diagonal and the diagonal elements are the eigenvalues. 
Let’s see how this feature emerges. 
   Any set {|𝑛⟩} of orthonormal basis vectors (eigenvectors 
or otherwise) respects the completeness relation, for 
which 

1෨ = ∑ |𝑛⟩⟨𝑛|.                                   ௡ (37) 
 

Any vector |𝜓⟩ in the space can be expressed as a 
superposition of basis vectors. To carry this out, multiply 
the completeness relation from the right by |𝜓⟩: 

|𝜓⟩  = ෍|𝑛⟩⟨𝑛|𝜓⟩ 

௡

 

 
                = ∑ 𝑐௡|𝑛⟩                                     ௡ (38) 

 
where 

𝑐௡ ≡  ⟨𝑛|𝜓⟩.                                  (39) 

The state vector |𝜓⟩ has now been projected onto the 
{|𝑛⟩} basis set. Such a projection can also be done with 
the Hamiltonian matrix, as in Feynman’s ammonia  
 

molecule problem. First, recall that in the notation for a 
matrix element such as 𝐻௥௖, the first index r identifies the 
row and the second index c identifies the column in which 
the matrix element stands. Notice from the Hamiltonian 
matrix of Eq. (28b), expressed in the context of a |1⟩, |2⟩ 
basis, that 
 

    ⟨1|𝐻|1⟩ =  (1 0) ൬
𝛼 𝛽
𝛽 𝛼

൰ ቀ
1
0

ቁ =  𝛼 =  𝐻ଵଵ   (40a) 

 

    ⟨1|𝐻|2⟩  =  (1 0) ൬
𝛼 𝛽
𝛽 𝛼

൰ ቀ
0
1

ቁ =  𝛽 =  𝐻ଵଶ (40b) 

 
and so on. More generally, for any basis vectors |𝑛⟩ and 
|𝑛′⟩ that belong to the same complete set, 
 

𝐻௡௡ᇲ =  ⟨𝑛|𝐻|𝑛′⟩.                                           (41) 

So the matrix representation of the Hamiltonian in the 
{|𝜓ା⟩, |𝜓ି⟩} basis is 
 

൬
〈𝜓ା|𝐻|𝜓ା〉 〈𝜓ା|𝐻|𝜓ି〉

〈𝜓ି|𝐻|𝜓ା〉 〈𝜓ି|𝐻|𝜓ି〉
൰  ≡ ൬

𝐻ାା 𝐻ାି

𝐻ିା 𝐻ିି
൰.     (42a) 

 
Working out the four matrix elements gives a diagonal 
representation with the eigenvalues on the diagonal: 
 

൬
𝐻ାା 𝐻ାି

𝐻ିା 𝐻ିି
൰ =  ൬

𝛼 + 𝛽 0
0 𝛼 − 𝛽

൰.            (42b) 

In general, the transformation from a representation of a 
matrix M in one basis set {|𝑛⟩} to its representation M’ in 
another basis set {|𝛾⟩} is a “similarity transformation,” 
which can be efficiently developed by inserting the unit 
matrix twice, in the form of the completeness relation: 
 
                       𝑀′ఊఊᇲ =  〈𝛾|𝑀|𝛾′〉  

=  〈𝛾|1෨ 𝑀 1෨ |𝛾′〉 

                               = 〈𝛾| ෍ |𝑛

௡

〉 〈𝑛| 𝑀 ෍ |𝑛′

௡ᇲ

〉 〈𝑛ᇱ|𝛾′〉 

    = ∑ 〈𝛾|𝑛〉 𝑀௡௡ᇲ  〈𝑛ᇱ|𝛾′〉,
     ௡,௡ᇲ

        (43a) 

or, more succinctly, for the matrices themselves, 

               𝑀ᇱ =  𝛬ற𝑀𝛬 ,                           (43b) 

where 𝛬 denotes the matrix of transformation coefficients, 

𝛬௡ఊ =  〈𝑛|𝛾〉, and 𝛬ற denotes its Hermitian conjugate, the 

“adjoint” (the transpose and complex conjugate of 𝛬). 
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