
 

A Motorcycle or Bicycle as a Gyroscope (Sort Of) 
Part II: Bike stability and the effects of gyroscopic action 

by Dwight E. Neuenschwander, Southern Nazarene University 

 
     In the Spring installment of this article, we 
considered how the wheels of a bicycle or motorcycle 
(bike) make the machines a kind of gyroscope. We 
also examined how the two spinning wheels are not as 
essential to the bike’s stability as we might think, and 
we examined the importance of the castor, the distance 
between the steering axis–ground intersection and the 
front tire’s ground contact point, in stability. Recall 
that the castor is denoted 𝛿𝛿 (Fig. 2). 

 

 
                                                         𝛿𝛿 

 
             𝛿𝛿 
Figure 2 (from part I):  Showing the castor distance on a 
1994 Kawasaki Vulcan (top) and a 1962 J.C. Higgins 
Flightliner (bottom).  Their front wheels have been 
deliberately set straight ahead. All photos and images by 
Dwight E.  Neuenschwander unless otherwise noted. 
 
     Now let us review the essential dimensions that 
concern us. Recall that Fig. 4 shows a schematic: a 
denotes the bike’s wheelbase; Z is the point on the 
ground directly below the CM with the bike upright; b 
denotes the distance between Z and the rear tire’s 
contact point with the ground; h is the height of the 

CM above the ground; and the castor distance 𝛿𝛿 is 
shown with an idealized vertical steering axis. 

 
Figure 4 (from part I):  View of bike from the side, showing 
the distances a, b, h, and 𝛿𝛿. 
 
     We then considered the bike moving through a 
turn, its path the arc of a circle of radius R.  From Fig. 
5a, an overhead view of the bike, we let 𝛼𝛼 be the angle 
relative to the bike frame through which the front 
wheel is turned; let 𝜂𝜂 be the angle relative to an 
arbitrary fixed direction through which the frame has 
turned as the bike moves along the arc; and let 𝑛𝑛� 
denote a unit vector normal to the bike’s frame and 
pointing towards the center of curvature of the circular 
arc.  From Fig. 5b, a view of the bike from behind it, 
we let 𝜃𝜃 be the lean angle of the bike from the vertical.  
For dynamic variables we let m denote the mass of the 
bike and rider, and 𝑔𝑔 the magnitude of the 
gravitational field. 
     Now let’s move on to consider bike stability and 
the effects of gyroscopic action. 
 
On Stability 
     As discussed in Part I, Newton’s second law in 
rotational form says that net torque about the steering 
axis on the handlebars-fork-front wheel system—
torques due to lean and friction—produces a change in 
the vertical component of angular momentum 
according to 
 
𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎

�𝑔𝑔𝑔𝑔 −
𝑣𝑣2𝛼𝛼
𝑎𝑎
� =

𝑑𝑑 
𝑑𝑑𝑑𝑑
�𝐼𝐼𝑓𝑓𝛼̇𝛼 − 𝐼𝐼𝑜𝑜𝜔𝜔 𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 �  (22) 

where 𝐼𝐼𝑓𝑓 denotes the moment of inertia of the 
handlebar-fork-front wheel assembly and 𝐼𝐼𝑜𝑜 denotes 



the front wheel’s moment of inertia about its axle with 
𝜔𝜔 the wheel’s angular velocity.   
 

 
 
Figure 5 (from part I): View of bike from above, showing 
angles 𝛼𝛼 and 𝜂𝜂 and the unit vector 𝒏𝒏� (left). View of bike 
from behind it, showing the angle 𝜃𝜃 (right). 
 
     Let us return to Eq. (22) and include the front 
wheel’s moment of inertia about its axle.  With 
sin 𝜃𝜃 ≈ 𝜃𝜃  and noting that 𝜔𝜔 = 𝑣𝑣 𝑟𝑟⁄  where r denotes 
the front wheel’s outer radius, Eq. (22) becomes 
 

𝛼̈𝛼 −  𝜇𝜇 �𝜃𝜃 −
𝑣𝑣2

𝑔𝑔𝑔𝑔
𝛼𝛼� −  𝛾𝛾𝛾𝛾𝜃̇𝜃 =  0   (25) 

where we have defined a gyroscopic factor 𝛾𝛾  
 

𝛾𝛾 ≡ 𝐼𝐼𝑜𝑜 𝐼𝐼𝑓𝑓 𝑟𝑟⁄                               (26) 

and a castor factor 
 

𝜇𝜇 ≡  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝐼𝐼𝑓𝑓⁄  .                      (27) 

Suppose the bike travels straight and upright initially, 
where 𝛼𝛼 = 0  and 𝜃𝜃 = 0.  If at some moment 𝜃̇𝜃 
becomes nonzero (while 𝛼𝛼 and 𝜃𝜃 are still 
approximately zero) then by Eq. (25) it follows that 
𝛼̈𝛼 ≠ 0 and the bike turns in the direction of the lean 
because of the gyroscopic effect, 𝛾𝛾 ≠ 0.  Let us also 
recall Eq. (10) from Part I, which gives the component 
of the gravitational force in the 𝒏𝒏� direction. Assuming 
θ to be small and neglecting friction, the 𝒏𝒏� component 
of Newton’s Second Law says, with some 
rearrangement from (10):  
 

𝜃̈𝜃 −
𝑔𝑔
ℎ
�𝜃𝜃 −

𝑣𝑣2

𝑔𝑔𝑔𝑔
𝛼𝛼� +

𝑏𝑏𝑏𝑏
ℎ𝑎𝑎

𝛼̇𝛼 = 0.   (28) 

 
Eqs. (25) and (28), which reveal dynamic coupling 
between 𝛼𝛼 and 𝜃𝜃, will be our working equations in the 
considerations that follow. 

     Since Jones’s experiments with modified bicycles 
show that gyroscopic effects are not dominant factors 
for bike stability, let us examine bike stability in the 
extreme case of 𝛾𝛾 = 0, which will be followed by the 
𝛾𝛾 ≠ 0 case in order to see how large a role the 
gyroscopic factor does play. 
 
Case 1: 𝛾𝛾 = 0 
With zero gyroscopic effects Eq. (25) becomes 
 

𝛼̈𝛼 = 𝜇𝜇 �𝜃𝜃 −
𝑣𝑣2

𝑔𝑔𝑔𝑔
𝛼𝛼� .                           (29) 

Being proportional to the weight of bike and rider, 𝜇𝜇 

is typically quite large.  Consequently, if 𝜃𝜃 − 𝑣𝑣2𝛼𝛼

𝑔𝑔𝑔𝑔
> 0 

(e.g., the rider leans with the front wheel initially 

pointed straight ahead) then 𝛼𝛼 grows until 𝜃𝜃 − 𝑣𝑣2𝛼𝛼

𝑔𝑔𝑔𝑔
=

0.   Because 𝜃𝜃 − 𝑣𝑣2𝛼𝛼

𝑔𝑔𝑔𝑔
 will eventually become zero, let 

us assume 
 

𝜃𝜃 =
𝑣𝑣2

𝑔𝑔𝑔𝑔
𝛼𝛼.                                              (30) 

With this constraint used in Eq. (28) the equation of 
motion for 𝜃𝜃 reduces to 
 

𝜃̈𝜃 +  𝜅𝜅𝜃̇𝜃 = 0                                        (31) 

where 
 

𝜅𝜅 ≡  𝑏𝑏𝑏𝑏 ℎ𝑣𝑣⁄ .                                        (32) 

Denoting the initial lean angular velocity as 𝜃̇𝜃(0) =
 𝑊𝑊𝑜𝑜, Eq. (31) integrates to 
 

𝜃𝜃(𝑡𝑡) =
𝑊𝑊𝑜𝑜

𝜅𝜅
(1 − 𝑒𝑒−𝜅𝜅𝜅𝜅)                        (33) 

from which we obtain the asymptotic lean angle 
 

𝜃𝜃(∞) =  𝑊𝑊𝑜𝑜 𝜅𝜅⁄ .                                    (34) 

Therefore, by Eqs. (30) and (32), 
 

𝛼𝛼(∞) = 𝑊𝑊𝑜𝑜ℎ𝑎𝑎 𝑏𝑏𝑏𝑏⁄ .                             (35) 

Note that 𝜃𝜃(∞) and 𝛼𝛼(∞) have the same sign—the 
front wheel turns in the direction of the lean.  The 
leaning bike stabilizes itself by moving in a circular 
path of some radius R.  To determine R, when the bike 



has traveled a distance along the circular arc equal to 
its wheelbase a, the bike frame has rotated through the 
angle 𝛼𝛼 = 𝑎𝑎

𝑅𝑅
 (see Eq. 6 in part 1), which by Eq. (35) 

gives for the circle’s radius 
 

𝑅𝑅 =
𝑏𝑏𝑏𝑏
ℎ𝑊𝑊𝑜𝑜

.                                (36) 

All of this occurs by assuming 𝛾𝛾 = 0, i.e., with no 
gyroscopic help whatsoever from the wheels!  Clearly 
the gyroscopic action is not essential for turning a 
motorcycle or a bicycle. 
     While still in the 𝛾𝛾 = 0 case, let us lift the 

restriction of Eq. (30) and allow 𝜃𝜃 − 𝑣𝑣2

𝑔𝑔𝑔𝑔
𝛼𝛼 ≠ 0.  Eq. 

(25) now becomes 
 

𝛼̈𝛼 +
𝜇𝜇𝑣𝑣2

𝑔𝑔𝑔𝑔
𝛼𝛼 = 𝜇𝜇𝜇𝜇.               (37) 

This resembles the equation of a driven undamped 
harmonic oscillator.  According to Eq. (37), if the 
handlebars are turned at a moment when 𝜃𝜃 passes 
through zero, then at that moment the front wheel may 
begin oscillating, because Eq. (37) then describes a 
simple harmonic oscillator.  In that event we have 
 

𝛼𝛼(𝑡𝑡) ≈  𝛼𝛼𝑜𝑜 cos (𝜔𝜔𝜔𝜔)          (38) 

with angular frequency 𝜔𝜔, 
 

𝜔𝜔 = �
𝜇𝜇𝑣𝑣2

𝑔𝑔𝑔𝑔
 .                        (39) 

     Lowell and McKell tabulate the necessary 
parameters for a particular bicycle (model not given) 
and rider.[2]  For instance, their bike had a = 1.0 m, b 
= 0.33 m, h = 1.5 m, r = 0.33 m, m = 80 kg.  They cite 
𝜇𝜇 = 133 𝑠𝑠−2, and mention in their acknowledgments 
that this “Jones couple” was “rather tricky” to 
measure, I presume because of 𝐼𝐼𝑓𝑓.  Their bicycle data 
predicts an oscillation frequency 𝜔𝜔

2𝜋𝜋
≈ 2 Hz at v = 3.5 

m/s—low enough for an alert rider to easily make 
necessary corrections.  But the existence of these 
oscillations opens the door to the possibility of a 
runaway oscillation, the notorious speed wobble that 
cyclists (especially racers) encounter in some 
circumstances. 
     How does the front wheel’s oscillation affect the 
lean angle 𝜃𝜃?  Eq. (28), repeated here with some 
rearrangement, says 
 

𝜃̈𝜃 −
𝑔𝑔
ℎ
𝜃𝜃 = −

𝑣𝑣
ℎ𝑎𝑎

(𝑣𝑣𝑣𝑣 + 𝑏𝑏𝛼̇𝛼)       (40) 

where h is the CM height, as described in part 1 of the 
article. When Eq. (38) holds and 𝛼𝛼 is oscillatory, then 
we expect 𝜃𝜃 to also be oscillatory but possibly phase-
shifted from 𝛼𝛼, because if Eq. (38) holds then Eq. (40) 
becomes, within a phase factor,   
 

𝜃̈𝜃 −
𝑔𝑔
ℎ
𝜃𝜃 ≈ −

𝑣𝑣𝛼𝛼𝑜𝑜
ℎ𝑎𝑎

[𝑣𝑣 cos (𝜔𝜔𝜔𝜔) − 𝑏𝑏𝑏𝑏 sin (𝜔𝜔𝜔𝜔) ].  (41) 

The complementary solution of Eq. (41) suggests the 

possibility of a runaway oscillation 𝜃𝜃 ~𝑒𝑒
+𝑡𝑡�𝑔𝑔

ℎ which, 
fortunately in most riding, does not often arise.  Lowell 
and McKell remark, 
 
“To summarize, if gyroscopic effects are ignored, the 
bicycle is almost self-stable.  A perturbation tending to 
push it over results, in the first approximation, merely 
in the bicycle entering a curved path.  However, the 
bicycle is unstable in the sense that oscillations in 𝛼𝛼 
tend to grow.  In practice, the oscillatory instability 
would probably not matter; growth is very slow and it 
is possible that the oscillations would not be 
noticeable if the rider were anything other than 
completely inert.” [2] 
 
     Though not essential to stability, do gyroscopic 
effects contribute to stability, perhaps to damp out 
front wheel oscillations?  Gyroscopic effects have, 
surely, some effect.  Let us probe further by allowing 
𝛾𝛾 to be nonzero. 
 
Case 2: 𝛾𝛾 ≠ 0 
     Let us return to Eq. (25) with 𝛾𝛾 ≠ 0.  Because the 
rider does not normally suddenly jerk the handlebars 
to a large angle (doing so would be disastrous), 𝛼̈𝛼 is 
very small; let us approximate it as 𝛼̈𝛼 = 0, and allow 

that 𝜃𝜃 − 𝑣𝑣2

𝑔𝑔𝑔𝑔
𝛼𝛼 ≠ 0.  Now Eq. (25) may be written 

 

𝛼𝛼 =
𝑔𝑔𝑔𝑔
𝑣𝑣2 �𝜃𝜃 +

𝛾𝛾𝛾𝛾
𝜇𝜇
𝜃̇𝜃� .        (42) 

Differentiating with respect to time yields: 
 

𝛼̇𝛼 =
𝑔𝑔𝑔𝑔
𝑣𝑣2 �𝜃̇𝜃 +

𝛾𝛾𝛾𝛾
𝜇𝜇
𝜃̈𝜃� .        (43) 

Insert Eqs. (42) and (43) for 𝛼𝛼 and 𝛼̇𝛼 into Eq. (28), 
which becomes 
 



𝜃̈𝜃 �1 +
𝛾𝛾𝛾𝛾𝛾𝛾
ℎ𝜇𝜇

�  +  
𝑔𝑔𝑔𝑔
ℎ𝑣𝑣
�1 +

𝛾𝛾𝑣𝑣2

𝜇𝜇𝜇𝜇
� 𝜃̇𝜃 = 0.  (44) 

Eq. (44) integrates to 
 

𝜃𝜃(𝑡𝑡) =
𝑊𝑊𝑜𝑜

𝜅𝜅′
�1 − 𝑒𝑒−𝜅𝜅

′𝑡𝑡�        (45) 

where, in terms of the 𝜅𝜅 of Eq. (32), 
 

𝜅𝜅′ = 𝜅𝜅�
1 + 𝛾𝛾𝑣𝑣2

𝜇𝜇𝜇𝜇

1 + 𝛾𝛾𝛾𝛾𝛾𝛾
ℎ𝜇𝜇

�  ≡ 𝜅𝜅𝜅𝜅.   (46) 

Notice that 𝜅𝜅′ = 𝜅𝜅 when 𝛾𝛾 = 0.  If 𝜁𝜁 > 1 then 𝜃𝜃 
damps to its asymptotic value faster than it does with 
𝛾𝛾 = 0, which means gyroscopic effects enhance 
stability.  In Eq. (46) 𝜁𝜁 exceeds 1 if 𝛾𝛾𝑣𝑣

2

𝜇𝜇𝜇𝜇
 >  𝛾𝛾𝛾𝛾𝛾𝛾

ℎ𝜇𝜇
, or 𝑣𝑣 >

𝑏𝑏�𝑔𝑔 ℎ⁄ .  This inequality is satisfied for v > 1 m/s for 
the bicycle parameters cited by Lowell & McKell,[2] 
a minimum velocity easily attained.  But if 𝜁𝜁 <  1, i.e., 
if 𝑣𝑣 < 𝑏𝑏�𝑔𝑔 ℎ⁄ , then the oscillations damp more slowly 
than they would if 𝛾𝛾 = 0. 
     Turning to the effect of 𝛾𝛾 on oscillations when 𝛼̈𝛼 is 
not negligible, let us recall our working equations for 
𝛼̈𝛼 and 𝜃̈𝜃, Eqs. (25) and (28), repeated here for 
convenience: 
 

𝛼̈𝛼 + 𝜔𝜔2𝛼𝛼 = 𝜇𝜇𝜇𝜇 + 𝛾𝛾𝛾𝛾𝜃̇𝜃          (47) 

where 𝜔𝜔2 is given by Eq. (39), and 
 

𝜃̈𝜃 −
𝑔𝑔
ℎ
𝜃𝜃 = −

𝑣𝑣
ℎ𝑎𝑎

(𝑣𝑣𝑣𝑣 + 𝑏𝑏𝛼̇𝛼).  (48) 

If it were not for some contrasting minus signs, it 
would appear that 𝛼𝛼 and 𝜃𝜃 are proportional and in 
phase for all situations in which Eqs. (47) and (48) 
apply.  But despite differing signs, in the 
complementary solutions of these differential 
equations (when the right-hand sides are zero) we see 
intimations of a runaway oscillation: 𝛼𝛼 could be 
oscillatory, 𝛼𝛼𝑐𝑐 ~ cos (𝜔𝜔𝜔𝜔) , and 𝜃𝜃 could be 

exponential, 𝜃𝜃𝑐𝑐~ 𝑒𝑒
±𝑡𝑡�𝑔𝑔ℎ.   

     Lowell and McKale carried out numerical solutions 
of Eqs. (47) and (48).  They presented their results in 
graphs of 𝜃𝜃 vs. t; qualitative schematic sketches of 
them are shown in Fig. 10.  The dotted curves include 
no gyroscopic effects (𝛾𝛾 = 0) and the solid curves 
consider nonzero 𝛾𝛾; the red curves are for a faster 

speed than the black curves.  These authors note that 
“Gyroscopic action is stabilizing in the sense that it 
results in a smaller (mean) value of 𝜃𝜃, but destabilizing 
in the sense that it enhances the oscillatory 
instability.”[2] 
 

Figure 10: Schematic of data from Fig. 3 of Ref. 2 showing 
𝜃𝜃(𝑡𝑡) for red (fast) and black (slow) velocities.  The dotted 
curves have 𝛾𝛾 = 0 and the solid curves have 𝛾𝛾 ≠ 0. 
 
     Let us see if we can extract an analytic 
approximation to this behavior.  Write Eq. (47) as 
 

𝛼̈𝛼  − 𝛾𝛾𝛾𝛾𝜃̇𝜃  +  𝜔𝜔2𝛼𝛼 =  𝜇𝜇𝜇𝜇.         (49) 

 
Figure 1 (from part I):  Jared Mees and his Indian Scout FTR 
750 motorcycle in a controlled power slide during a flat-
track race. Photo courtesy of David Hoenig, Flat Trak Fotos. 
 
Consider a bike coming out of a left turn.  During a 
normal left turn the bike leans to the left and the front 
wheel turns to the left, so that 𝜃𝜃 > 0 and 𝛼𝛼 > 0.  In 
coming out of the normal turn, 𝜃𝜃 and 𝛼𝛼 both decrease 
to zero, so 𝜃̇𝜃 < 0 and 𝛼̇𝛼 <  0.  When the turn is 
completed, the bike goes straight and both angles have 
returned smoothly to zero (if there are no overshoots 
and oscillations).  But in a controlled power slide like 
the one shown in Fig. 1, during the slide 𝜃𝜃 > 0 
(leaning to the left) but 𝛼𝛼 <  0 (front wheel turned to 
the right).  In coming out of the slide and heading 
down the straightaway, the rider returns both angles 
back to zero.  Thus 𝜃̇𝜃  <  0 but 𝛼̇𝛼 > 0.  To consider 
both cases of straightening the bike up when coming 



out of a turn—a normal turn or a power slide—it may 
be reasonable to assume that, within a phase shift, 
 

𝜃̇𝜃 =  ±𝑘𝑘𝛼̇𝛼                                   (50) 

for some k > 0.  As the bike approaches 𝜃𝜃 ≈ 0 Eq. (49) 
becomes 
 

𝛼̈𝛼 ∓ 2𝛽𝛽𝛼̇𝛼 + 𝜔𝜔2𝛼𝛼 =  0          (51) 

where 
𝛽𝛽 ≡ 𝑘𝑘𝑘𝑘𝑘𝑘 2⁄ .                         (52) 

Parameterizing the solution as 𝛼𝛼(𝑡𝑡) ~ 𝑒𝑒𝜎𝜎𝜎𝜎 for some 
constant 𝜎𝜎 turns Eq. (51) into 
 

𝜎𝜎2 ∓ 2𝛽𝛽𝛽𝛽 + 𝜔𝜔2 =  0             (53) 

and solving for 𝜎𝜎 gives 

𝛼𝛼(𝑡𝑡) ~ 𝑒𝑒±𝛽𝛽𝛽𝛽 exp(∓ 𝑡𝑡 �𝛽𝛽2 − 𝜔𝜔2).  (54) 

If 𝛽𝛽2 < 𝜔𝜔2, i.e. if 𝑘𝑘𝑘𝑘𝑘𝑘 < 𝜔𝜔, then �𝛽𝛽2 − 𝜔𝜔2 becomes 

imaginary which makes exp(∓ 𝑡𝑡 �𝛽𝛽2 − 𝜔𝜔2) 
sinusoidal, and in that case 

𝛼𝛼(𝑡𝑡) ~ 𝑒𝑒±𝛽𝛽𝛽𝛽 cos ( 𝑡𝑡 �𝜔𝜔2 − 𝛽𝛽2 )      (55) 

which includes both possibilities of damped or 
runaway oscillations.  By Eq. (50) a similar result 
holds for 𝜃𝜃. 
     Having experienced a speed wobble or two myself 
(though not as spectacular as Don Castro’s) here is my 
hypothesis on what may be happening in a speed 
wobble.  As the rider comes out of the slide with 𝜃𝜃 and 
𝛼𝛼 approaching zero, if both angles overshoot their 
zeroes the rider may for a moment be leaning to the 
right with the front wheel pointing to the left.  Of 
course, in any riding situation the rider makes 
corrections continually, but if the overshoots of 𝜃𝜃 and 
𝛼𝛼 are not sufficiently small, some combination of 
parameters can lead very quickly to an exponentially 
growing speed wobble (the + sign in the exponential 
of Eq. 54). 
     Tire shape also has an important effect on bike 
steering and stability.  The cross-section of a car tire is 
approximately horizontal where it touches the road.  
But because a bike leans over in turns, the cross-
sections of motorcycle and bicycle tires are rounded.  
Thus during the lean significant tire surface still 
contacts the road, contact so necessary for maintaining 
the frictional force between tire and road.  In addition, 

the tires of a car or non-leaning bike roll like cylinders, 
but when a bike leans its tires behave more like rolling 
cones (Fig. 11)[1]—the trajectory turns in the 
direction of the cone’s smaller end. 

 
Figure. 11:  Because of its rounded cross-section, a rolling 
leaning tire behaves like a cone, helping the bike turn.  
 
     When riding a bicycle or motorcycle, one must pay 
sharp attention to other traffic, road conditions, and 
being visible (assume you are invisible).  However, 
when traffic is minimal and there are no woods next to 
the road that might conceal foraging deer, you can 
meditate on some interesting physics of the stability 
and steering of bikes. Ride safe! • 
 

 
Figure 12: When leaning on the kickstand a bike’s front 
wheel turns into the lean, as illustrated with a 2006 Yamaha 
Royal Star Midnight Venture near Pie Town, New Mexico.  
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This article offers a drastic revision of the Summer 
2003 Radiations Elegant Connections article, which 
was ridiculously over-simplified.  
 
Part I of this revised article is available on the 
Radiations website,   
www.sigmapisigma.org/sigmapisigma/radiations/spri
ng/2021/motorcycle-or-bicycle-gyroscope-sort. 
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