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     I was attending the national flat-track motorcycle 
races several years ago in Oklahoma City, watching 
the competitors run their qualifying laps, racing the 
clock individually to determine their positions at the 
start of the upcoming race.  Coming out of the final 
turn and heading into the home stretch at 80 mph, the 
Triumph motorcycle ridden by great flat-tracker Don 
Castro suddenly went into a “speed wobble,” which 
immediately grew in amplitude and threw Castro over 
the handlebars. 
     In flat-track racing the riders speed around a half-
mile oval dirt track, hitting speeds of around 100 mph.  
The motorcycles are not the road-racing sports bikes 
that, on paved tracks, will round a corner at 150 mph, 
leaning at angles approaching 90 degrees; flat-trackers 
are stripped-down roaring heavy cruisers like Harley-
Davidsons and Kawasaki Vulcans.  To get through the 
turns at speed on dirt, the riders maintain a controlled 
power slide (Fig. 1). 
 

 
Figure 1: Jared Mees and his Indian Scout FTR 750 
motorcycle in a controlled power slide during a flat-track 
race. Photo courtesy of David Hoenig, Flat Trak Fotos. 
 

     In everyday riding the angle of the machine’s lean 
from vertical and the angle turned by the front wheel 
are related, the front wheel turning in the same 
direction as the lean.  In coming out of a normal turn 
those two angles approach zero together.  Although 
oscillations can occur, if they do they are normally 
easily corrected by the rider.  In a power slide the 

angles have opposite signs.  To go into a dirt-track 
power slide for a left turn, upon entering the curve you 
throw your weight deliberately to the left while 
turning the handlebars hard to the right (see Fig. 1) 
and use the throttle to control the slide through the 
rear wheel’s angular velocity.  In coming out of the 
power slide to head down the straightaway, under 
some circumstances oscillations in the lean angle can 
amplify with astonishing rapidity into the dreaded 
“speed wobble.”  In Don Castro’s case, he knew how to 
fall—wearing full leathers, gloves, boots and a sturdy 
helmet, he slid on his back, head first down the 
straightaway directly in front of the grandstands, with 
both hands on his helmet, seeming to enjoy his slide 
while his motorcycle tumbled after him.  When they 
both stopped, Castro got up, dusted himself off, and 
pushed his bike back to the pits.  Later that afternoon 
he competed in the race with the same bike and placed 
well.  I don’t know if Castro ever saw the equations 
that describe the steering and stability of a motorcycle, 
but he clearly knew how to skillfully apply the physics 
of riding!  
     The wheels of a motorcycle or bicycle (“bike” for 
either) make the machine a kind of gyroscope.  A 
gyroscopic effect is apparent when a bicycle is pushed 
without a rider—it rolls in a straight line for a while, 
until it slows down and begins to lean over.  Then the 
front wheel turns in the direction of the lean and the 
bike falls over.  The same phenomenon appears in a 
rolling coin.  Could a leaning moving bike be a 
precessing gyroscope, where a horizontal displacement 
of the center of mass (CM) creates a torque that turns 
the bike?  When riding a motorcycle or bicycle I find 
that when I lean to the left or right while trying to keep 
the front wheel pointed straight ahead, the machine 
indeed moves in the direction of the lean, but ever so 
slowly—more of a drift instead of a deliberate turn 
(not good strategy for armadillo avoidance).  The 
hypothesis that a leaning bike is a precessing 
gyroscope evidently forms a minor part of the story.* 
     Look carefully at the bike’s front wheel and the fork 
connecting   it   to   the   handlebars.   Visualize   a   line 
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Figure 2:  Showing the castor distance δ on a 1994 Kawasaki 
Vulcan (top) and a 1962 J.C. Higgins Flightliner (bottom).  
Their front wheels have been deliberately set straight ahead. 
Photos by Dwight E. Neuenschwander. 

 
extending through the fork’s steering axis to the 
ground.  The steering axis meets the ground in front of 
the tire’s point of contact with the ground.  The 
distance between the steering axis–ground intersection 
and the front tire’s ground contact point is called the 
“castor” or “trail,” here denoted 𝛿𝛿 (Fig. 2). 
   When the handlebars are turned, the tire contact 
point revolves around the steering axis because of the 
castor. You can feel this torque with an upright bike at 
rest: turn the handlebars back and forth and the bike 
frame behind the steering axis turns in the same 
direction through a smaller angle.  The castor provides 
the lever arm that, with friction between the ground 
and tire, produces a torque that turns the bike.  We will 
see that when the bike leans from the vertical (even 
when resting on the kickstand) the front wheel readily 
turns in the direction of the lean (see Fig. 3).  For 
moving bikes, a relationship exists between the angle 𝛼𝛼 
through which the front wheel turns from the straight-
ahead direction and the angle 𝜃𝜃 that the bike leans 
from the vertical.  In our sign convention, both angles 
are positive for turns and lean to the rider’s left. 

     Consider a bike moving upright and straight ahead 
on a horizontal road.  Both wheels spin in the same 
vertical plane. Each wheel contributes a spin angular 
momentum to give a total angular momentum vector L 
that points horizontally to the rider’s left. When I ride 
my bicycle or motorcycle, I imagine this angular 
momentum as an arrow sticking out of the machine’s 
front axle. This vector grows longer when I speed up 
and shortens when I slow down. 
     To entertain the possibility of precession as a 
consequence of leaning, consider the torque due to the 
bike and rider’s weight.  Refer to the tire patch axis 
defined by the two points where the tires touch the 
road.  When moving in a straight line without lean, the 
weight of the bike, the rider’s CM, and the normal 
forces on the tires pass through the tire patch axis, 
producing zero torque about that axis.  As a torqueless 
gyroscope the moving bike appears to be stable until 
the speed becomes too slow. But what happens when 
the bike leans? 
     Suppose the rider leans to the left, shifting the CM 
to the left of the tire patch axis. This induces a nonzero 
torque, 𝐫𝐫 × (𝑚𝑚𝒈𝒈) that points horizontally toward the 
rear of the bike (Fig. 3).  
     According to Newton’s second law, in its rotational 
form a torque 𝝉𝝉 produces a changing angular 
momentum given by the rate equation 𝝉𝝉 = dL/dt.  The 
angular momentum vector acquires a component dL 
that points toward the back of the bike—in the same 
direction as the torque.  If this were the end of the 
story, as long as the bike leans the angular momentum 
vector L would rotate about a vertical axis—and the 
bike would turn—or rather slowly drift—to the left.   
     Trying to turn the bike by merely shifting your 
body weight off to the side produces a slow response, 
woefully inadequate for avoiding the car that suddenly 
pulls out in front of you.   
     Incidentally, we see why motorcyclists and 
bicyclists lean into a strong crosswind. If a strong wind 
comes from my left, the wind pressure exerted on me 
and the machine produces a clockwise torque (as 
viewed by an observer following me). To restore zero 
net torque, I must lean to the left. 
     A more effective way to turn left is to apply a small 
horizontal force forward on the left handlebar grip.  The 
bike abruptly moves—counterintuitively—to the left. 
This is called countersteering.  Motorcyclists and 
bicyclists do this even when they do not realize it.  Try 



 
Figure 3: The torque produced by only the weight of the 
bike-rider center of mass (rider not shown) when leaning.  
The torque 𝒓𝒓 × (𝑚𝑚𝒈𝒈) points toward the back of the bike. All 
sketches by Dwight E. Neuenschwander. 
 

it the next time you ride.  When going straight, exert a 
gentle pressure forward on the left handlebar.  The 
bike will respond quickly to the left.  A preliminary 
way to think of it goes like this: when I gently apply a 
force forward on the left grip, I produce a torque about 
the steering axis that has a vertical downward 
component. To the horizontal angular momentum 
vector L is added an increment dL with a vertically 
downward component.  Adding this dL to the original 
L tips the bike to the left, after which the center-of-
mass offset contributes its torque.1  Riding experience 
shows that with countersteering the bike turns 
deliberately and responsively, and the difference in 
response between countersteering and merely shifting 
one’s weight arises from the interaction between the 
tires and the road.  We must examine this in more 
detail.  The physics of bike steering and stability is 
more complex to model than actually riding a bike—
we learned to ride bicycles before we learned our 
multiplication tables! 
     The following analysis closely follows that of Lowell 
and McKell,2 to which I hope to contribute a few value-
added steps.  Several other papers on this topic can 
also be recommended.1,3-6  Figure 4 shows a schematic 
of the essential dimensions that concern us: a denotes 
the bike’s wheelbase; Z is the point on the ground 
directly below the CM with the bike upright; b denotes 
the distance between Z and the rear tire’s contact point 
with the ground; h is the height of the CM above the 
ground; and the castor distance 𝛿𝛿 is shown with an 
idealized vertical steering axis. 
     Consider the bike moving through a turn, its path 
the arc of a circle of radius R.  From Fig. 5a, an 
overhead view of the bike, let 𝛼𝛼 be the angle relative to 

 
Figure 4:  View of bike from the side, showing the distances 
a, b, h and 𝛿𝛿. 
 

the bike frame through which the front wheel is 
turned; let 𝜂𝜂 be the angle relative to an arbitrary fixed 
direction through which the frame has turned as the 
bike moves along the arc; and let 𝒏𝒏� denote a unit 
vector normal to the bike’s frame and pointing toward 
the center of curvature of the circular arc.  From Fig. 
5b, a view of the bike from behind it, let 𝜃𝜃 be the lean 
angle of the bike from the vertical.  For dynamic 
variables let m denote the mass of the bike and rider 
and 𝑔𝑔 the magnitude of the gravitational field. 

 
Figure 5.  (a, left) View of bike from above, showing angles 𝛼𝛼 
and 𝜂𝜂 and the unit vector 𝒏𝒏�.  (b, right) View of bike from 
behind it, showing the angle 𝜃𝜃. 
 

     As the bike moves through the circular arc, its 
acceleration in the direction of 𝒏𝒏� comes from three 
displacements.  If the bike were a point mass, it would 
undergo the centripetal acceleration 
 

𝑎𝑎𝑅𝑅 =  
𝑣𝑣2

𝑅𝑅
,                           (1) 

 

where v denotes the bike’s speed—which we assume 
to be constant throughout the turn.  But as the bike 
leans the CM at height h gets displaced towards the 
arc’s center of curvature, which contributes to the 
acceleration the amount 
 

𝑎𝑎𝜃𝜃 = ℎ𝜃̈𝜃.                             (2) 



In addition, as the bike sweeps through the curve and 
its frame rotates through angle 𝜂𝜂, the CM acceleration 
also picks up the contribution 
 

𝑎𝑎𝜂𝜂 = 𝑏𝑏𝜂̈𝜂                               (3) 
 

in the same direction.  Gathering all these 
contributions, the acceleration in the direction of 𝒏𝒏� is 
 

𝑎𝑎𝑛𝑛  =  
𝑣𝑣2

𝑅𝑅
+  ℎ𝜃̈𝜃 + 𝑏𝑏𝜂̈𝜂.      (4) 

 

From the geometry of the bike and the definition of the 
radian, it follows that 
 

𝑣𝑣 = 𝑅𝑅𝜂̇𝜂                                 (5) 
 

and 
𝛼𝛼 =  

𝑎𝑎
𝑅𝑅

.                                (6) 
 

 Combining Eqs. (5) and (6) yields 
 

𝑣𝑣 =  
𝑎𝑎
𝛼𝛼
𝜂̇𝜂.                           (7) 

 

From Eq. (7) we may write 
 

𝜂̈𝜂  =  
𝑣𝑣𝛼̇𝛼
𝑎𝑎

,                            (8) 
 

and with this and Eq. (6), Eq. (4) becomes 
 

𝑎𝑎𝑛𝑛  =  
𝑣𝑣2𝛼𝛼
𝑎𝑎

+  ℎ𝜃̈𝜃 +
𝑏𝑏𝑏𝑏
𝑎𝑎
𝛼̇𝛼.   (9) 

 

The component of the gravitational force in the 𝒏𝒏� 
direction is 𝑚𝑚𝑚𝑚 sin𝜃𝜃 ≈  𝑚𝑚𝑚𝑚𝑚𝑚, where we assume 𝜃𝜃 to be 
small.  Neglecting friction (you can turn a bike on ice, 
but it’s tricky—friction keeps the lean from going all 
the way to 𝜃𝜃 = 𝜋𝜋 2⁄  after the turn begins), the 𝒏𝒏� 
component of Newton’s second law says 
 

𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚�
𝑣𝑣2

𝑎𝑎
𝛼𝛼 + ℎ𝜃̈𝜃 +

𝑏𝑏𝑏𝑏
𝑎𝑎
𝛼̇𝛼�, 

or, upon rearranging, 
 

𝜃̈𝜃 +
𝑏𝑏𝑏𝑏
ℎ𝑎𝑎

𝛼̇𝛼 + 
𝑣𝑣2

ℎ𝑎𝑎
𝛼𝛼 – 

𝑔𝑔
ℎ
𝜃𝜃 = 0.     (10) 

 

Since leaning and turning the front wheel are related, if 
the angles are small, we might be justified in assuming 
a linear relation of the form 
 

𝛼𝛼 = 𝑘𝑘𝑘𝑘,                                            (11) 
 

where k = const.  If this is valid, then Eq. (10) becomes 
 

𝜃̈𝜃 + �
𝑘𝑘𝑘𝑘𝑘𝑘
ℎ𝑎𝑎

� 𝜃̇𝜃 +
1
ℎ
�
𝑣𝑣2𝑘𝑘
𝑎𝑎

− 𝑔𝑔�𝜃𝜃 =  0.  (12) 

If 𝑘𝑘 >  𝑔𝑔𝑔𝑔 𝑣𝑣2� , this is the equation of a damped simple 
harmonic oscillator, raising the possibility of front-
wheel oscillations.  We consider these oscillations 
below. 
     With two spinning wheels giving a net angular 
momentum vector, one might think that gyroscopic 
effects would keep the bike stable, increasingly so with 
increasing speed.  But in a series of experiments David 
Jones cleverly demonstrated that the gyroscopic effects 
are minor and not as essential to stability as one might 
assume.6 Jones attached a third axle and wheel to the 
frame of a bicycle.  The third wheel, parallel to the 
original two, did not touch the ground and could be 
made to spin in either sense.  Its angular momentum 
added to that of the original wheels, changing the 
bike’s gyroscope parameters to test the efficacy of 
gyroscopic action for stability.  Jones found that the 
third wheel had negligible effects on stability.  He then 
emphasized the importance of castor. 
     The effect of castor is easily demonstrated with a 
parked bike.  With the kickstand down the bike leans 
over (most bikes to the left), and unless you 
deliberately set it otherwise the front wheel turns in 
the direction of the lean.  When riding normally (no 
power slides), a nonzero lean angle 𝜃𝜃 turns the front 
wheel through a nonzero angle 𝛼𝛼 with the same sign as 
𝜃𝜃.  Conversely, turning the front wheel of a moving 
bike produces a lean, a point of physics exploited in 
countersteering: to move the machine to the left one 
pushes slightly forward on the left handlebar7—and to 
go the other way, a slight pull backwards on the left 
handlebar moves the machine to the right.  Why?  
Pushing forward with a slight pressure on the left 
handlebar turns the front wheel to the right through a 
tiny angle 𝑑𝑑𝑑𝑑 < 0, but because of the castor, the line of 
action of the force of friction acting sideways on the 
tire produces another torque, a restoring torque, that 
swings the front wheel to the left through a larger 
angle 𝛼𝛼 > 0 (Fig. 6b), and the bike leans into the 
direction of the turn—by Eq. (10), 𝛼𝛼 and 𝜃𝜃 have the 
same sign after these angles stop changing.  Restoring 
torques can produce oscillations, but consider what 
happens if the tire contact point sits behind the 
steering axis–ground intersection point (negative 
castor): then the torque is not a restoring torque, but a 
“repulsive” one (Fig. 6c).   



 
Figure 6:  X denotes the point of intersection between the 
ground and the steering axis.  The filled circle represents the 
tire contact point with the ground.  𝛿𝛿 is the castor. (a, left) 
𝛼𝛼 = 0; (b, center) 𝑑𝑑𝑑𝑑 <  0.  F is the component of the frictional 
force perpendicular to the plane of the tire.  𝐹𝐹δ produces a 
restoring torque about X, which swings the tire to the left.  (c, 
right) If  X were behind the contact patch, then 𝐹𝐹δ would be a 
repulsive torque, not a restoring one.  If δ were zero there 
would be very little lever arm for the tire’s ground contact 
patch to turn the bike. 
 

If I try to turn a moving bike left by cranking the 
handlebars toward the left initially, 𝑑𝑑𝑑𝑑 would change 
sign and the frictional torque in response would turn 
the bike to the right.  If 𝛿𝛿 were zero, then friction 
would have very little lever arm to turn the bike at all, 
and if the steering axis intersects the ground behind 
the tire patch contact point, then a forward nudge on 
the left handlebar would cause a repulsive torque with 
positive feedback, steering the bike farther to the right 
(Jones reports such a bike to be the “nearest to being 
‘unrideable’”6). 
     The lean lowers the CM to produce a gravitational 
torque.  That is crucial, so let’s take a closer look.  
When the front wheel turns through the angle 𝛼𝛼, as 
seen in Fig. 7, the bike frame behind the steering axis 
turns through an angle 𝜑𝜑,  
 

𝛼𝛼𝛼𝛼 = 𝑎𝑎𝑎𝑎.                             (13) 
 

This moves the CM in the direction of 𝒏𝒏� by the amount 
𝑏𝑏𝑏𝑏 (Fig. 8a) so that by Eq. (13), 
 

𝑏𝑏𝑏𝑏 = 𝑏𝑏 �
𝛼𝛼𝛼𝛼
𝑎𝑎
� .                 (14) 

 

When the bike leans at angle 𝜃𝜃, the CM drops the 
distance ∆𝑦𝑦 (Fig. 8b), where 
 

∆𝑦𝑦 = (𝑏𝑏𝑏𝑏) sin𝜃𝜃 
 

                  ≈ �
𝑏𝑏𝑏𝑏
𝑎𝑎
�𝛼𝛼𝛼𝛼.       (15) 

 

 
Figure 7:  Turning the front wheel through angle α turns the 
bike frame behind the steering axis through the smaller angle 
φ in the same sense. 
 

This drop corresponds to a decrease in the bike and 
rider’s gravitational potential energy in the amount 
𝑚𝑚𝑚𝑚 ∆𝑦𝑦 = (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎)𝛼𝛼𝛼𝛼⁄ .  But a change in potential 
energy equals work, which in terms of torque 𝜏𝜏 about 
the steering axis is 𝜏𝜏𝜏𝜏 for the front wheel turning 
through angle 𝛼𝛼.Therefore 𝜏𝜏𝜏𝜏 = (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎)𝛼𝛼𝛼𝛼⁄ , and the 
torque associated with the lean of the bike is 
 

𝜏𝜏𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = �
𝑚𝑚𝑔𝑔𝑏𝑏𝑏𝑏
𝑎𝑎

�𝜃𝜃.        (16) 

  

 
Figure 8: (a, left) Overhead view of the bike frame turning 
through angle 𝜑𝜑. (b, right) View from behind the bike, 
showing the drop on the CM as the bike leans through angle 
𝜃𝜃. 
 

     Now let’s add friction for a bike already in a turn, 
when 𝜃𝜃 and 𝛼𝛼 are constants.  With the front wheel 
turned from the straight-ahead direction, friction 
exerts a “sideways” force on the tires.  Let 𝐹𝐹𝑓𝑓 and 𝐹𝐹𝑏𝑏 be 
the sideways component of the force of friction on the 
front and back tire, respectively, when the bike moves 
through a turn of radius R (Fig. 9).  The 𝒏𝒏� direction 
component of F = ma applied to the entire bike now 
gives 

𝐹𝐹𝑓𝑓 + 𝐹𝐹𝑏𝑏 =
𝑚𝑚𝑣𝑣2

𝑅𝑅
.          (17) 



 
Figure 9: The sideways frictional forces acting on the bike 
tires as the bike moves through a turn of radius R. 
 

In addition, the sum of torques about a vertical axis 
through the CM vanishes, so that 
 

𝐹𝐹𝑓𝑓 (𝑎𝑎 − 𝑏𝑏) = 𝐹𝐹𝑏𝑏 𝑏𝑏.        (18) 
 

Solving Eqs. (17) and (18) for the frictional forces gives 
 

𝐹𝐹𝑏𝑏 = �
𝑚𝑚𝑣𝑣2

𝑅𝑅
�
𝑎𝑎 − 𝑏𝑏
𝑎𝑎

       (19) 
 

and 
 

𝐹𝐹𝑓𝑓 = �
𝑚𝑚𝑣𝑣2

𝑅𝑅
�
𝑏𝑏
𝑎𝑎

.               (20) 
 

With the front wheel turned and the bike in the turn, 
the force 𝐹𝐹𝑓𝑓 produces a frictional torque 𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐹𝐹𝑓𝑓 𝛿𝛿 
about the steering axis, in the opposite sense of 𝜏𝜏𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 
so that 

𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = −�𝑚𝑚𝑣𝑣2

𝑅𝑅
� 𝑏𝑏𝑏𝑏
𝑎𝑎

 , 
 

which by Eq. (6), used to rewrite R in terms of the 
bike’s wheelbase a, becomes 
 

𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = −
𝑚𝑚𝑣𝑣2𝑏𝑏𝑏𝑏𝑏𝑏

𝑎𝑎2
 .          (21) 

 

Newton’s second law in rotational form says that net 
torque about the steering axis on the handlebars-fork-
front wheel system—torques due to lean and friction—
produces a change in the vertical component of 
angular momentum according to 
 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎

�𝑔𝑔𝑔𝑔 −
𝑣𝑣2𝛼𝛼
𝑎𝑎
� =

𝑑𝑑 
𝑑𝑑𝑑𝑑
�𝐼𝐼𝑓𝑓𝛼̇𝛼 − 𝐼𝐼𝑜𝑜𝜔𝜔 sin𝜃𝜃�  (22) 

 

where 𝐼𝐼𝑓𝑓 denotes the moment of inertia of the 
handlebar-fork-front wheel assembly and 𝐼𝐼𝑜𝑜 denotes 
the front wheel’s moment of inertia about its axle with 
𝜔𝜔 the wheel’s angular velocity.  Since Jones’s 
experiments suggest that a gyroscopic effect does not 

dominate, if we ignore it and set 𝐼𝐼𝑜𝑜  =  0, then Eq. (22) 
reduces to  

𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎

�𝑔𝑔𝑔𝑔 −
𝑣𝑣2𝛼𝛼
𝑎𝑎
� =  𝐼𝐼𝑓𝑓𝛼̈𝛼 .       (23) 

 

Notice that 𝛼̈𝛼 = 0 if 
 

𝜃𝜃 = �
𝑣𝑣2

𝑎𝑎𝑎𝑎
�𝛼𝛼,                                (24) 

 

in which case the bike moves uniformly—in a straight 
line and upright if 𝛼𝛼 = 0, or in the arc of a circular path 
while leaning if 𝛼𝛼 ≠ 0.   
 
In the next installment we will consider bike stability 
and the effects of gyroscopic action. 
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